Categoricity in hyperarithmetical degrees

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degrees That Are Not Degrees of Categoricity

A computable structure A is x-computably categorical for some Turing degree x, if for every computable structure B ∼= A there is an isomorphism f : B → A with f ≤T x. A degree x is a degree of categoricity if there is a computable structure A such that A is x-computably categorical, and for all y, if A is y-computably categorical then x ≤T y. We construct a Σ2 set whose degree is not a degree o...

متن کامل

Degrees of categoricity of computable structures

Defining the degree of categoricity of a computable structureM to be the least degree d for whichM is d-computably categorical, we investigate which Turing degrees can be realized as degrees of categoricity. We show that for all n, degrees d.c.e. in and above 0 can be so realized, as can the degree 0.

متن کامل

Degrees of Categoricity and the Hyperarithmetic Hierarchy

We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of Fokina, Kalimullin, and R. Miller to show that for every computable ordinal α, 0 is the degree of categoricity of some computable structure A. We show additionally that for α a computable successor ordinal, every degree 2-c.e. in and above 0 is a degree of categoricity. We further prove that every degree of c...

متن کامل

Finite Computable Dimension and Degrees of Categoricity

We first give an example of a rigid structure of computable dimension 2 such that the unique isomorphism between two non-computably isomorphic computable copies has Turing degree strictly below 0′′, and not above 0′. This gives a first example of a computable structure with a degree of categoricity that does not belong to an interval of the form [0(α),0(α+ 1)] for any computable ordinal α. We t...

متن کامل

Degrees of Categoricity on a cone via η-Systems

We investigate the complexity of isomorphisms of computable structures on cones in the Turing degrees. We show that, on a cone, every structure has a strong degree of categoricity, and that degree of categoricity is ∆α-complete for some α. To prove this, we extend Montalbán’s η-system framework to deal with limit ordinals in a more general way. We also show that, for any fixed computable struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 1987

ISSN: 0168-0072

DOI: 10.1016/0168-0072(87)90038-8